On Ternary Quadratic Diophantine Equation

$$
x^{2}+y^{2}=17 z^{2}
$$

A. Kavitha

Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Trichy, India-620 002.
R. Umamaheswari
M.Phil Scholar., Department of Mathematics, Shrimati Indira Gandhi College, Trichy, India-620 002.

Abstract - The quadratic diophantine equation with three unknowns represented by $x^{2}+y^{2}=17 z^{2}$ is analyzed for finding its non-zero distinct integral solutions. Different patterns of solutions of the equation under consideration are obtained. A few interesting properties among the solutions are presented.

Index Terms - Ternary quadratic equation with three unknowns, integral solutions, polygonal numbers and pyramidal numbers.

1. INTRODUCTION

The quadratic diophantine equation with three unknowns offers an unlimited field for research because of their variety [1-3]. In particular, one may refer [4-19] for quadratic equations with three unknowns. This communication concerns with yet another interesting equation $x^{2}+y^{2}=17 z^{2}$ representing homogeneous quadratic diophantine equation with three unknowns for determining its infinitely many non-zero integral solutions. A few interesting properties among its solutions are given. Also, formulas for generating sequences of integer solutions based on its given solution are presented.

2. NOTATION

Polygonal number of rank n with size m
$t_{m, n}=n\left[1+\frac{(n-1)(m-2}{2}\right]$
Centered Hexagonal pyramidal number of rank n
$C p_{n, 6}=n^{3}$
Pronic number of rank n
$\operatorname{Pr}_{n}=n(n+1)$
Gnomonic number of rank n
$G N O_{n}=2 n-1$

$$
S_{n}=6 n^{2}-6 n+1
$$

3. METHOD OF ANALYSIS

The ternary quadratic diophantine equation to be solved for its non-zero distinct integral solution is

$$
\begin{equation*}
x^{2}+y^{2}=17 z^{2} \tag{1}
\end{equation*}
$$

Different patterns of solution of (1) are presented below.

3.1.PATTERN- I

Write 17 as

$$
\begin{equation*}
17=(4+i)(4-i) \tag{2}
\end{equation*}
$$

Assume

$$
\begin{equation*}
z=a^{2}+b^{2} \tag{3}
\end{equation*}
$$

where a, b are non-zero distinct integers.
Using (2) and (3) in (1), we get

$$
x^{2}+y^{2}=(4+i)(4-i)\left(a^{2}+b^{2}\right)^{2}
$$

Employing the method of factorization, we have

$$
(x+i y)(x-i y)=(4+i)(4-i)(a+i b)^{2}(a-i b)^{2}
$$

Equating the positive and negative factors, we get

$$
\begin{align*}
& x+i y=(4+i)(a+i b)^{2} \tag{4}\\
& x-i y=(4-i)(a-i b)^{2} \tag{5}
\end{align*}
$$

Equating the real and imaginary part either in (4) or (5), we get

$$
\begin{align*}
& x(a, b)=4 a^{2}-4 b^{2}-2 a b \\
& y(a, b)=a^{2}-b^{2}+8 a b \tag{6}
\end{align*}
$$

Star number of rank n

International Journal of Emerging Technologies in Engineering Research (IJETER)

Thus (6) and (3) represents non-zero distinct integral solutions of (1)

PROPERTIES :

$$
\begin{aligned}
& >y\left(a, a^{2}\right)+z\left(a, a^{2}\right)-2 t_{4, a}-8 C p_{a, 6}=0 \\
& >x(a, a+1)+y(a, a+1)+z(a, a+1)-8 t_{4, a}+G N o_{a}+5=0 \\
& >9 z(a, a)+x(a, a) \text { is a perfect square. } \\
& >x\left(a, a^{2}\right)-y\left(a, a^{2}\right)-z\left(a, a^{2}\right)-2\left(t_{4, a}\right)^{2}+4 t_{4, a}+10 C p_{a, 6}=0 \\
& >y(a, a)+z(a, a)-t_{4, a}=0
\end{aligned}
$$

REMARK:

Write 17 as

$$
\begin{equation*}
17=(1+4 i)(1-4 i) \tag{7}
\end{equation*}
$$

where a, b are non-zero distinct integers,
Using (7) and (3) in (1), we get

$$
x^{2}+y^{2}=(1+4 i)(1-4 i)\left(a^{2}+b^{2}\right)^{2}
$$

Employing the method of factorization, we have

$$
(x+i y)(x-i y)=(1+4 i)(1-4 i)(a+i b)^{2}(a-i b)^{2}
$$

Equating the positive and negative factors, we get

$$
\begin{align*}
& x+i y=(1+4 i)(a+i b)^{2} \tag{8}\\
& x-i y=(1-4 i)(a+i b)^{2} \tag{9}
\end{align*}
$$

Equating the real and imaginary part either in (8) or (9), we get

$$
\left.\begin{array}{l}
x(a, b)=a^{2}-b^{2}-8 a b \tag{10}\\
y(a, b)=4 a^{2}-4 b^{2}+2 a b
\end{array}\right\}
$$

Thus (10) and (3) represents non-zero distinct integral solutions of (1)

3.2.PATTERN II

Observe that (1) is written as

$$
\begin{align*}
& x^{2}+y^{2}=16 z^{2}+z^{2} \\
& \frac{x-4 z}{z+y}=\frac{z-y}{x+4 z}=\frac{\alpha}{\beta}, \beta \neq 0 \tag{11}
\end{align*}
$$

$$
\left.\begin{array}{l}
\beta x+\alpha y-(4 \beta+\alpha) z=0 \tag{12}\\
-\alpha x-\beta y+(\beta-4 \alpha) z=0
\end{array}\right\}
$$

Solving (12) by applying the method of cross multiplication, the corresponding non-zero distinct integral solutions to (1) are obtained as

$$
\begin{aligned}
& x(\alpha, \beta)=4 \alpha^{2}-4 \beta^{2}-2 \alpha \beta \\
& y(\alpha, \beta)=\alpha^{2}-\beta^{2}+8 \alpha \beta \\
& z(\alpha, \beta)=-\alpha^{2}-\beta^{2}
\end{aligned}
$$

PROPERTIES :

$$
\begin{aligned}
& >x(1, \beta)+z(1, \beta)+3 t_{4, \beta}+2 p r_{\beta}-3=0 \\
& >x(\alpha, 1)-t_{10, \alpha}-p r_{\alpha}+t_{4, \alpha}+4=0 \\
& >4 y(\alpha, \alpha+1)-x(\alpha, \alpha+1)-34 p r_{\alpha}=0 \\
& >4 y(\alpha, \alpha-1)-x(\alpha, \alpha-1)-t_{70, \alpha}-p r_{\alpha}+t_{4, \alpha}=0 \\
& >z(\alpha, \alpha)+2 t_{4, \alpha}=0
\end{aligned}
$$

REMARK:

In addition to (11), (1) may also be expressed in the form of ratio as

$$
\frac{x-4 z}{z-y}=\frac{z+y}{x+4 z}=\frac{\alpha}{\beta}, \beta \neq 0
$$

Following the procedure as presented above, the corresponding non-zero distinct integral solutions to (1) is given by

$$
\begin{aligned}
& x(\alpha, \beta)=-4 \alpha^{2}+4 \beta^{2}+2 \alpha \beta \\
& y(\alpha, \beta)=\alpha^{2}-\beta^{2}+8 \alpha \beta \\
& z(\alpha, \beta)=\alpha^{2}+\beta^{2}
\end{aligned}
$$

3.3.PATTERN III

Introducing the linear transformations

$$
\begin{equation*}
x=u+v, y=u-v, z=2 w \tag{13}
\end{equation*}
$$

in (1), it is written as

$$
\begin{equation*}
u^{2}+v^{2}=34 w^{2} \tag{14}
\end{equation*}
$$

Assume
which is equivalent to the system of double equations

International Journal of Emerging Technologies in Engineering Research (IJETER)
Volume 6, Issue 5, May (2018)

$$
\begin{align*}
& w=c^{2}+d^{2} \tag{15}\\
& 34=(3+5 i)(3-5 i) \tag{16}
\end{align*}
$$

Substituting (15) and (16) in (14), we get

$$
(u+i v)(u-i v)=(3+5 i)(3-5 i)(c+i d)^{2}(c-i d)^{2}
$$

Equating the positive and negative parts, we get

$$
\begin{align*}
& (u+i v)=(3+5 i)(c+i d)^{2} \tag{17}\\
& (u-i v)=(3-5 i)(c-i d)^{2} \tag{18}
\end{align*}
$$

Equating the real and imaginary parts either in (17) or (18), we get

$$
\left.\begin{array}{l}
u(c, d)=3 c^{2}-3 d^{2}-10 c d \tag{19}\\
v(c, d)=5 c^{2}-5 d^{2}+6 c d
\end{array}\right\}
$$

Substituting (19) and (15) in (14), the corresponding non-zero integral solution to (1) are given by

$$
\begin{aligned}
& x(c, d)=8 c^{2}-8 d^{2}-6 c d \\
& y(c, d)=-2 c^{2}+2 d^{2}-16 c d \\
& z(c, d)=2 c^{2}+2 d^{2}
\end{aligned}
$$

PROPERTIES:

$$
\begin{aligned}
& >y(d, d+1)+z(d, d+1)+t_{18, d}+p r_{d}-t_{4, d}+4=0 \\
& >x(c, 1)+y(c, 1)+z(c, 1)+13 t_{4, c}-t_{18, c}-13 p r_{c}+4=0 \\
& >x(c-1, c)+y(c-1, c)-20 t_{4, c}+8 p r_{c}-6=0 \\
& >6 z(1,1) \text { is a nasty number. } \\
& >y\left(c^{2}, c\right)+z\left(c^{2}, c\right)-4 t_{4, c}+16 C p_{c, 6}=0
\end{aligned}
$$

REMARK:

Write 34 as

$$
\begin{equation*}
34=(5+3 i)(5-3 i) \tag{20}
\end{equation*}
$$

Substituting (15) and (20) in (14), we get

$$
(u+i v)(u-i v)=(5+3 i)(5-3 i)(c+i d)^{2}(c-i d)^{2}
$$

Equating the positive and negative parts, we get

$$
\begin{align*}
& (u+i v)=(5+3 i)(c+i d)^{2} \tag{21}\\
& (u-i v)=(5-3 i)(c-i d)^{2} \tag{22}
\end{align*}
$$

Equating the real and imaginary parts either in (21)or (22), we get

$$
\left.\begin{array}{l}
u(c, d)=5 c^{2}-5 d^{2}-6 c d \tag{23}\\
v(c, d)=3 c^{2}-3 d^{2}+10 c d
\end{array}\right\}
$$

Substituting (20) and (23) in (14), the corresponding non-zero integral solution to (1) are given by

$$
\begin{aligned}
& x(c, d)=8 c^{2}-8 d^{2}-4 c d \\
& y(c, d)=2 c^{2}-2 d^{2}-16 c d \\
& z(c, d)=2 c^{2}+2 d^{2}
\end{aligned}
$$

3.4.PATTERN IV

Introducing the linear transformations,

$$
\begin{equation*}
x=u+v, y=u-v, z=2 w \tag{24}
\end{equation*}
$$

in (1), it is written as

$$
u^{2}-25 w^{2}=9 w^{2}-v^{2}
$$

(1) can be written in the form of ratio as

$$
\frac{u-5 w}{3 w-v}=\frac{3 w+v}{u+5 w}=\frac{\alpha}{\beta}, \beta \neq 0
$$

which is equivalent to the system of double equations

$$
\left.\begin{array}{l}
\beta u+v \alpha+(5 \beta-3 \alpha) w=0 \tag{25}\\
-\alpha u+\beta v+(3 \beta-5 \alpha) w=0
\end{array}\right\}
$$

Solving (26) by applying the method of cross multiplication, the corresponding non-zero distinct integral solutions to (1) are obtained by

$$
\begin{align*}
& u(\alpha, \beta)=8 \alpha^{2}-8 \beta^{2}-6 \alpha \beta \\
& v(\alpha, \beta)=2 \alpha^{2}-2 \beta^{2}+16 \alpha \beta \tag{26}\\
& w(\alpha, \beta)=2 \alpha^{2}-2 \beta^{2}
\end{align*}
$$

Substituting (26) and (15) in (14), the corresponding non-zero integral solution to (1) are given by

$$
\begin{aligned}
& x(\alpha, \beta)=8 \alpha^{2}-8 \beta^{2}-4 \alpha \beta \\
& y(\alpha, \beta)=2 \alpha^{2}-2 \beta^{2}+16 \alpha \beta \\
& z(\alpha, \beta)=2 \alpha^{2}+2 \beta^{2}
\end{aligned}
$$

PROPERTIES:

$$
\begin{aligned}
& >x(\alpha, 1)+y(\alpha, 1)-10 p_{\alpha}+10 \equiv 0(\bmod 2) \\
& >x(\beta+1, \beta)-z(\beta+1, \beta)+16 t_{4, \beta}-8 p r_{\beta}-6=0
\end{aligned}
$$

$$
\begin{aligned}
& >x(\alpha, \alpha)+y(\alpha, \alpha)+z(\alpha, \alpha)-16 t_{4, \alpha}=0 \\
& >\quad x(\alpha, \alpha-1)+z(\alpha, \alpha-1)-16 p r_{\alpha}+16 t_{4, \alpha}-6=0 \\
& >\quad x(\alpha-1, \alpha)+y(\alpha-1, \alpha)-5\left(s_{\alpha}-1\right) \\
& \quad+\left(G N O_{\alpha}\right)-2 t_{4, \alpha}-9=0
\end{aligned}
$$

3.5:PATTERN V

One may write (1) as

$$
\begin{equation*}
x^{2}+y^{2}=17 z^{2} * 1 \tag{27}
\end{equation*}
$$

Write 1 as

$$
1=\frac{(4+3 i)(4-3 i)}{25}
$$

Assume

$$
z=a^{2}+b^{2}
$$

where a, b are non-zero distinct integers
Using (28) and (3) in (27), we get

$$
x^{2}+y^{2}=(4+i)(4-i)\left(a^{2}+b^{2}\right)^{2} \frac{(4+3 i)(4-3 i)}{5^{2}}
$$

Employing the method of factorization the above equation is written as

$$
(x+i y)(x-i y)=(4+i)(4-i)(a+i b)^{2}(a-i b)^{2} \frac{(4+3 i)(4-3 i)}{5^{2}}
$$

Equating the positive and negative factors we get,

$$
\begin{align*}
& x+i y=\frac{1}{5}(4+i)(4-3 i)(a+i b)^{2} \tag{29}\\
& x-i y=\frac{1}{5}(4-i)(4-3 i)(a-i b)^{2} \tag{30}
\end{align*}
$$

Equating the real and imaginary part either in (29) or (30), we get

$$
\begin{aligned}
& x(a, b)=\frac{1}{5}\left(13 a^{2}-13 b^{2}-32 a b\right) \\
& y(a, b)=\frac{1}{5}\left(16 a^{2}-16 b^{2}-26 a b\right)
\end{aligned}
$$

As our interest is on finding integer solutions replacing a by 5 A and by be we get

$$
\left.\begin{array}{l}
x(A, B)=13 A^{2}-13 B^{2}-32 A B \\
y(A, B)=16 A^{2}-16 B^{2}+26 A B \tag{31}\\
z(A, B)=5 A^{2}+5 B^{2}
\end{array}\right\}
$$

Thus (31) and (3) represents non-zero distinct integral solutions of (1)

PROPERTIES:

$$
\begin{aligned}
> & y(A, A)-z(A, A)-16 t_{4, A}=0 \\
> & y(A+1, A)-x(A+1, A)-12 t_{3, A}+6 t_{4, A} \\
& -58 p r_{A}-3=0 \\
> & x\left(A^{2}, A\right)+z\left(A^{2} A\right)-18\left(t_{4, A}\right)^{2}+8 t_{4, A}+32 c p_{A, 6}=0 \\
> & x(B, B-1)+y(B, B-1)+z(B, B-1)-48 p r_{B} \\
& +38 t_{4, B}+29=0 \\
> & y(A, 1)+10 t_{4, A}-26 p r_{A}+16=0
\end{aligned}
$$

REMARK:
Write 1 as

$$
\begin{equation*}
1=\frac{(3+4 i)(3-4 i)}{25} \tag{32}
\end{equation*}
$$

Using (32) and (3) in (1), we get

$$
x^{2}+y^{2}=(1+4 i)(1-4 i)\left(a^{2}+b^{2}\right) \frac{(3+4 i)(3-4 i)}{5}
$$

Employing the method of factorization the above equation is written as

$$
\begin{align*}
& x+i y=(1+4 i)(a+i b)^{2} \frac{(3+4 i)}{5} \tag{33}\\
& x-i y=(1-4 i)(a-i b)^{2} \frac{(3-4 i)}{5} \tag{34}
\end{align*}
$$

Equating the real and imaginary parts either in (33) or (34), we get

$$
\begin{aligned}
& x(a, b)=\frac{1}{5}\left(-13 a^{2}+13 b^{2}-32 a b\right) \\
& y(a, b)=\frac{1}{5}(-26 a b)
\end{aligned}
$$

As our interest is on finding integer solutions replacing a by 5 A and b by 5 B , we get

International Journal of Emerging Technologies in Engineering Research (IJETER)

$$
\left.\begin{array}{l}
x(A, B)=-13 A^{2}+13 B^{2}-32 A B \\
y(A, B)=1-26 A B \\
z(A, B)=5 A^{2}+5 B^{2}
\end{array}\right\}
$$

GENERATION OF SOLUTIONS:

In this section, we obtain general formula for generating sequences of integer solutions to (1) based on its initial solution.

Formula: 1

Let $\left(x_{0}, y_{0}, z_{0}\right)$ be the initial solution to (1)
Let $\left(x_{1}, y_{1}, z_{1}\right)$ be the second solution of (1) where

$$
\begin{equation*}
x_{1}=3 h-x_{0}, y_{1}=3 h-y_{0}, z_{1}=z_{0}+h \tag{35}
\end{equation*}
$$

be the first solution to (1), where h is the non-zero integer to be determined.

Substituting (35) in (1) and simplifying, we get

$$
h=34 z_{0}+6 x_{0}+6 y_{0}
$$

Substituting (36) in (35), the second solution is obtained as

$$
\begin{aligned}
& x_{1}=17 x_{0}+18 y_{0}+102 z_{0} \\
& y_{1}=18 x_{0}+17 y_{0}+102 z_{0} \\
& z_{1}=6 x_{0}+6 y_{0}+35 z_{0}
\end{aligned}
$$

Expressing the above equations in the matrix form, we have

$$
\left[\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right]=M\left[\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right]
$$

where $\quad M=\left[\begin{array}{ccc}17 & 18 & 102 \\ 18 & 17 & 102 \\ 6 & 6 & 35\end{array}\right]$
Repeating the above process, the general values of x, y and z are given by

$$
\left[\begin{array}{l}
x_{2} \\
y_{2} \\
z_{2}
\end{array}\right]=M\left[\begin{array}{l}
x_{1} \\
y_{1} \\
z_{1}
\end{array}\right]=M^{2}\left[\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right]
$$

Repeating the above process, the general solution $\left(x_{n}, y_{n}, z_{n}\right)$ of (1) based on $\left(x_{0}, y_{0}, z_{0}\right)$ is given by

$$
\left[\begin{array}{l}
x_{n+1} \\
y_{n+1} \\
z_{n+1}
\end{array}\right]=M^{n+1}\left[\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right]
$$

where

$$
\begin{gathered}
M^{n+1}=\left(\begin{array}{ccc}
\frac{y_{n}+(-1)^{n}}{2} & \frac{y_{n}-(-1)^{n}}{2} & 17 x_{n} \\
\frac{y_{n}-(-1)^{n}}{2} & \frac{y_{n}+(-1)^{n}}{2} & 17 x_{n} \\
x_{n} & y_{n}
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
y_{0} \\
z_{0}
\end{array}\right) \quad \Rightarrow \\
x_{n+1}=\frac{y_{n}+(-1)^{n}}{2} x_{0}+\frac{y_{n}-(-1)^{n}}{2} y_{0}+17 x_{n} z_{0} \\
\Rightarrow \quad y_{n+1}=\frac{y_{n}-(-1)^{n}}{2} x_{0}+\frac{y_{n}+(-1)^{n}}{2} y_{0}+17 x_{n} z_{0} \\
\Rightarrow \quad z_{n+1}=x_{n} x_{0}+x_{n} y_{0}+y_{n} z_{0} \quad, \quad n=0,1,2 \ldots
\end{gathered}
$$

in which $\left(x_{n}, y_{n}\right)$ represents the general solution of the pellian equation $y^{2}=34 x^{2}+1$

4. CONCLUSION

In this paper, we have made an attempt to obtain infinitely many non-zero distinct integer solutions to the equation given by $x^{2}+y^{2}=17 z^{2}$. As ternary quadratic equations are rich in variety, one may search for the other choice of ternary quadratic diophantine equations and determine their integer solutions along with suitable properties.

REFERENCES

[1] R.D. Carmichael, "The Theory of Numbers and Diophantine Analysis, Dover Publications, New York, 1959.
[2] L.J. Mordell, "Diophantine equations", Academic Press, New York, 1970.
[3] L.E. Dickson, "History of theory of numbers and Diophantine analysis", Vol.2, Dover Publication, New York 2005.
[4] M.A. Gopalan, D. Geetha, "Lattice points on the Hyperboloid of two sheets $x^{2}-6 x y+y^{2}+6 x-2 y+y=z^{2}+4$ ", Impact J.Sci.Tech, 4, 2010 ,23-32.
[5] M.A. Gopalan, S. Vidhayalakshmi and A. Kavitha, "Integral points on the homogeneous cone $z^{2}=2 x^{2}-7 y^{2} "$, The Diophantus J.Math,1(2), 2012, 127-136.
[6] M.A. Gopalan, S. Vidhyalakshmi and S. Mallika, "Observation on the Hyperboloid of two sheets $x^{2}+2 y^{2}-z^{2}=2$ " The diophantus J.Math, 2(3), 2012, 221-226.
[7] M.A. Gopalan, S. Vidhyalakshmi, T.R. Usha Rani and S. Mallika, "Integeral points on the homogeneous cone $6 z^{2}+3 y^{2}-2 x^{2}=0$ ",Impact J.Sci. Tech, 6(1),2012, 7-13.
[8] M.A. Gopalan, S. Vidhyalakshmi and T.R. Usha Rani, "Integral points on the non-homogeneous cone $2 z^{2}+4 x y+8 x-4 z=0$ ", Global journal of Mathematics and Mathematical Sciences,2(1), 2012, 61-67.

International Journal of Emerging Technologies in Engineering Research (IJETER)
 Volume 6, Issue 5, May (2018)

[9] M.A. Gopalan, S. Vidhyalakshmi and A. Kavitha, "Oberservations on the hyperboloid of two sheet $7 x^{2}-3 y^{2}=z^{2}+z(y-z)+4 "$, International Journal of Latest Research in Science and technology,2(2), 2013, 84-86.
[10] M.A. Gopalan, S. Vidhyalakshmi and T.R. UshaRani, "On the ternary quadratic Diophantine equation $6\left(x^{2}+y^{2}\right)-8 x y=21 z^{2} "$, Sch.J.Eng Tech.,2(2A), 2014, 108-112.
[11] K. Meena, S. Vidhyalakshmi, M.A. Gopalan, Priya.IK, "Integral points on the cone $3\left(x^{2}+y^{2}\right)-5 x y=47 z^{2} "$ Bulletin of Mathematics and Statistic Research, 2(1), 2014, 65-70
[12] M.A. Gopalan, S. Vidhyalakshmi and S. Nivetha, "On the ternary quadratic equation $4\left(x^{2}+y^{2}\right)-7 x y=31 z^{2} "$. Diophantus J.Math,3(1), 2014, 1-7.
[13] K. Meena, S. Vidhyalakshmi, M.A. Gopalan and S.Aarthy Thangam, "Integer solutions on the homogeneous cone $4 x^{2}+3 y^{2}=28 z^{2}$ ", Bulletin of mathematics and Statistic Research, s2(1), 2014, 47-53.
[14] M.A. Gopalan, S. Vidhyalakshmi, "On the ternary quadratic Diophantine equation $8\left(x^{2}+y^{2}\right)-15 x y=80 z^{2} ", B O M S R$, Vol.2, No.4, 2014 , 429433.
[15] M.A. Gopalan, S. Vidhyalakshmi, A. Kavitha and D. Mary Madona, "On The Ternary Quadratic Diophantine equation $3\left(x^{2}+y^{2}\right)-2 x y=4 z^{2}$ ", International Journal of Engineering Science and Management Vol.5, Issue 2. April- June 2015, 11-18.
[16] S. Devibala, and M.A. Gopalan, "On the ternary quadratic Diophantine equation $7 x^{2}+y^{2}=z^{2}$ ", International Journal of Emerging Technologies in Engineering Research, 4(9), 2016, 6-7.
[17] M.A. Gopalan, S. Vidhyalakshmi and U.K. Rajalakshmi, "On the ternary quadratic diophantane equation $5\left(x^{2}+y^{2}\right)-6 x y=196 z^{2} "$. Vol- 3, Issue5, May 2017, 1-10.
[18] M.A. Gopalan, S. Vidhyalakshmi and S. Aarthy Thangam, "On the ternary quadratic equation $x(x+y)=z+20 "$. Vol -6, Issue-8, August 2017..
[19] M.A. Gopalan, S. Vidhyalakshmi and S. Aarthy Thangam, "Observation on the elliptic paraboloid $x^{2}+y^{2}=19 z$ ". Vol-1, Issue-9, October 2017. 37-39.

